بررسی خواص ضد باکتریایی و ضد قارچی نانوذرات اکسید روی و نقره علیه کاندیدا آلبیکانس و استرپتوکوک موتانس در رزین اکریل‌های بیس دنچر

نوع مقاله : مقاله‌های پژوهشی

چکیده

مقدمه: این مطالعه با هدف بررسی خاصیت ضد باکتریایی و ضد قارچی حاصل از افزودن نانوذرات اکسید نقره و اکسید روی به رزین اکریلی بیس دنچر انجام شد.
مواد و روش‌ها: در این مطالعه‌ی تجربی- آزمایشگاهی تعداد 120 نمونه بررسی گردید. پودر ساخت بیس دنچر پلی‌متیل متاکریلات (Ivoclar vivadent, Lichenstein SR Triplex Hot) Ivoclar  با ذرات (تقریباً کروی، اندازه‌ی: 10-30 نانومتر، خلوص 99 درصد) و نقره Ag (کروی، اندازه‌ی: 20 نانومتر، خلوص 99/99 درصد) با درصد وزنی 5/، 1، 2 و 5 درون دستگاه اولتراسونیک برای به دست آوردن یک ترکیب هموژن به خوبی مخلوط شدند. میکروارگانیسم‌های مورد مطالعه در این پژوهش، کاندیدا آلبیکانس و استرپتوکوک موتانس بود. میزان رشد میکروارگانیسم‌ها توسط دستگاه اسپکتروفتومتر بر اساس کدورت‌سنجی اندازه‌گیری شد و خوانش در 600 نانومتر انجام گرفت. داده‌ها توسط آزمون‌های ANOVA  One wayو Tukey post hoc انجام گردید. سطح معنی‌داری 0/05 در نظر گرفته شد
یافته‌ها: افزودن نانوذرات نقره و اکسید روی به رزین آکریلی باعث کاهش رشد کاندیدا آلبیکانس و استرپتوکوک موتانس گردید به طوری که حتی غلظت 5/0 درصد وزنی نانوذرات هم باعث کاهش معنی‌دار رشد میکروارگانیسم‌ها شد (05/0 >p value ). مهار کامل رشد در هر دو زمان 24 ساعت و 48 ساعت در غلظت 5 درصد بود.
نتیجه‌گیری: افزودن نانوذرات اکسید نقره و اکسید روی به رزین اکریلی بیس دنچر، باعث کاهش رشد میکروارگانیسم‌ها می‌گردد.
کلید واژه‌ها: رزین اکریلی، دنچر استوماتیت، کاندیدا آلبیکانس، استرپتوکوکوس موتانس.

عنوان مقاله [English]

Evaluation of Antibacterial and Antifungal Properties of ZnO and Silver Nanoparticles against Candida Albicans and Streptococcus Mutans in Acrylic Resin

چکیده [English]

Introduction: This study aimed to evaluate the antibacterial and antifungal effect of Ag and zinc oxide nanoparticles to complete denture acrylic resin
Materials and Methods: In this experimental laboratory study, 144 samples were evaluated. The powder of acrylic resin (PMMA Ivoclar Vivadent, Lichenstein SR Triplex Hot) was mixed homogeneously in the ultrasonic apparatus with Ag (purity: 99.99%, size: 20nm, spherical) and ZnO (purity: 99%, size: 10-30 nm, nearly spherical) particles with mass fraction 0.5, 1 ,2 and 5. The microorganisms of this study were Candida albicans and Streptococcus mutans. The growth rate of microorganisms was measured by spectrophotometer based on turbidity and readings at 600 nm. Data were analyzed by ANOVA and Tukey post hoc tests. The significance level was set at 0.05.
Results: Increasing Ag and ZnO nanoparticles to acrylic resin reduced the growth of Candida Albicans and Streptococcus Mutans. Even the concentration of 0.5% significantly reduced the growth of microorganisms. Complete growth inhibition was in the concentration of 5% after 24 and 48 hours.
Conclusions: Increasing the Ag and ZnO nanoparticles to acrylic resin reduced the growth of microorganisms.
Keywords: Acrylic resins, Denture stomatitis, Candida Albicans, Streptococcus Mutans.

1. Zarb G, Hobkirk J, Eckert S, Jacob R. Prosthodontic treatment for edentulous patients. 12th ed: Elsevier Health Sciences; 2013. p. 44-7.
2. Alan B. Mc Cracken removable partial prosthodontics. 11th ed. St Louis: CV Mosby; 2005. p. 158.
3. Jagger DC, Jagger RG, Allen SM, Harrison A. An investigation into the transverse and impact strength of "high strength" denture base acrylic resins. J Oral Rehabil 2002; 29(3): 263-7.
4. Casemiro LA, Gomes Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic resins with incorporated silver-zinc zeolite - part I. Gerodontology 2008; 25(3): 187-94.
5. Kassaee MZ, Akhavan A, Sheikh N, Sodagar A. Antimicrobial effect of a new dental acrylic resin containing silver nonoparticles. J Appl Polym Sci 2008; 110(3): 1699-703.
6. Kanie T, Fuji K, Arikawa H, Inoue K. Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers. Dental Materials 2000; 16(2): 150-8.
7. McNally L, Gosney MA, Doherty U, Field EA. The orodental status of a group of elderly in-patients: a preliminary assessment. Gerodontology 1999; 16(2): 81-4.
8. Jagger D, Jagger R, Allen S, Harrison A. An investigation into the transverse and impact strength of high strength denture base acrylic resins. J Oral Rehabil 2002; 29(3): 263-7.
9. Yadav P, Mittal R, Sood VK, Garg R. Effect of incorporation of silane-treated silver and aluminum microparticles on strength and thermal conductivity of PMMA. J Prosthodont 2012; 21(7): 546-51.
10. Prombonas AE, Vlissidis DS. Analysis of stresses in complete upper dentures with flat teeth at differing inclinations. Med Eng Phys 2009; 31(3): 314-9.
11. Mercier P, Bellavance F. Effect of artificial tooth material on mandibular residual ridge resorption. J Can Dent Assoc 2002; 68(6): 346-50.
12. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004; 25(18): 4383-91.
13. Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 2004; 23(1): 75-8.
14. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007; 18(22): 225103.
15. Slenters TV, Hauser-Gerspach I, Daniels AU, Fromm KM. Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. J Mater Chem 2008; 18(44): 5359-62.
16. Damm C, Münstedt H, Rösch A. Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 2007; 42(15): 6067-73.
17. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16(10): 2346.
18. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27(1): 76-83.
19. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006; 5(4): 916-24.
20. Cheng L, Weir MD, Xu HH, Antonucci JM, Kraigsley AM, Lin NJ, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 2012; 28(5): 561-72.
21. Cheng L, Weir MD, Xu HH, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res B Appl Biomater 2012; 100(5): 1378-86.
22. Solhi L, Atai M, Nodehi A, Imani M. A novel dentin bonding system containing poly (methacrylic acid) grafted nanoclay: synthesis, characterization and properties. Dental Materials 2012; 28(10): 1041-50.
23. Chladek G, Kasperski J, Barszczewska-Rybarek I, Żmudzki J. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int J Mol Sci 2013; 14(1): 563-74.
24. Sodagar A, Kassaee MZ, Akhavan A, Javadi N, Arab S, Kharazifard MJ. Effect of silver nano particles on flexural strength of acrylic resins. J Prosthodont Res 2012; 56(2): 120-4.
25. Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 2007; 9(3): 479-89.
26. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 2012; 24(1): 19-29.
27. Emamifar A, Kadivar M, Shahedi M, Soleimanian-zad S. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 2010; 22(3-4): 408-13.
28. Kairyte K, Kadys A, Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nano particles in suspension. J Photoch Photobio B 2013; 128: 78-84.
29. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nano Sci Nanotechnol 2005; 5(2): 244-9.
30. Panacek A, Kvitek SL, Prucek R, Kolgr M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006; 110(33): 16248-53.
31. Nam KY, Lee CH, Lee CJ. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology 2012; 29(2): e413-e419.
32. Ghahremanloo A, Rajabi O, Ghazvini K, Mirmortazavi AT, Haghighi MM. Antifungal effect of silver nanoparticles in acrylic resins. J Mashhad Dent Sch 2013; 37(3): 239-48.[In Persian].
33. Kamikawa Y, Hirabayashi D, Nagayama T, Fujisaki J, Hamada T, Sakamoto R, et al. In vitro antifungal activity against oral Candida species using a denture base coated with silver nanoparticles. J. Nanomater 2014; 2014: 6.
34. Li Z, Sun J, Lan J, Qi Q. Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation. Gerodontology 2016; 33(2): 209-16.
35. Kasraei S, Sami L, Hendi S, AliKhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod 2014; 39(2): 109-14.
36. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 2004; 275(1): 177-82.