ﻣﻴﺰان آزاد ﺷﺪن ﻛﺒﺎﻟﺖ از آﻟﻴﺎژ ﻛﺮوم ﻛﺒﺎﻟﺖ در دو دﻣﺎى ﻣﺨﺘﻠﻒ اﻟﻜﺘﺮوﭘﺎﻟﻴﺶ ﺑﻪ روش اﺳﭙﻜﺘﺮوﻓﻮﺗﻮﻣﺘﺮى ﺑﺎ ﺟﺬب اﺗﻤﻲ

نوع مقاله : مقاله‌های پژوهشی

چکیده

ﻣﻘﺪﻣﻪ: ﻓﻠﺰات ﺑﻪ ﻃﻮر وﺳﻴﻌﻲ در ﻣﻮاد ﺗﺮﻣﻴﻤﻲ ﻣﺴﺘﻘﻴﻢ و ﻏﻴﺮﻣﺴﺘﻘﻴﻢ در ﭘﺮوﺗﺰ و در ارﺗﻮدﻧﺴﻲ اﺳﺘﻔﺎده ﻣﻲﺷﻮﻧﺪ. ﺳﺎزﮔﺎرى زﻳﺴﺘﻲ اﻳﻦ ﻓﻠﺰات ﺑﻪ ﻃﺒﻴﻌﺖ ﺷﻴﻤﻴﺎﻳﻲ آنﻫﺎ، ﻣﻘﺪار ﻳﻮن آزاد ﺷﺪه و ﻃﻮل ﻣﺪت ﺗﻤﺎس اﻳﻦ ﻓﻠﺰات واﺑﺴﺘﻪ اﺳﺖ. ﻫﺪف از اﻳﻦ ﻣﻄﺎﻟﻌﻪ، ﺑﺮرﺳﻲ اﺛﺮ ﺗﻔﺎوت دﻣﺎى اﻟﻜﺘﺮوﭘﺎﻟﻴﺶ ﺑﺮ روى ﻣﻴﺰان آزادﺳﺎزى ﻋﻨﺼﺮ ﻛﺒﺎﻟﺖ از آﻟﻴﺎژ ﻛﺮوم ﻛﺒﺎﻟﺖ بود.
ﻣﻮاد و روشﻫﺎ: در اﻳﻦ ﻣﻄﺎﻟﻌﻪ‌ی آزﻣﺎﻳﺸﮕﺎﻫﻲ، ٢٤ اﻟﮕﻮى ﻣﻮﻣﻲ ﺑﻪ ﻗﻄﺮ ١٥ و ﺿﺨﺎﻣﺖ ١ ﻣﻴﻠﻲﻣﺘﺮ ﺑﺮﻳﺪه ﺷﺪ. ﺳﭙﺲ ﻧﻤﻮﻧﻪﻫﺎ اﺳﭙﺮوﮔﺬارى ﺷﺪ و ﺳﻴﻠﻨﺪرﮔﺬارى، ﺣﺬف ﻣﻮم و ﻛﺴﺘﻴﻨﮓ ﺑﺮاى رﻳﺨﺘﻦ آﻟﻴﺎژ اﻧﺠﺎم ﺷﺪ. ﻧﻤﻮﻧﻪﻫﺎی ﻓﻠﺰى ﺑﺎ اﻛﺴﻴﺪ آﻟﻮﻣﻴﻨﻴﻮم ﺳﻨﺪ ﺑﻼﺳﺖ و ﭘﺮداﺧﺖ ﺷﺪ و ﺑﻪ ﺻﻮرت ﺗﺼﺎدﻓﻲ در دو ﮔﺮوه ١٢‌ﺗﺎﻳﻲ در دو دﻣﺎى ٤٥ و ٥٥ اﻟﻜﺘﺮوﭘﺎﻟﻴﺶ ﺷﺪ. ﻧﻤﻮﻧﻪ‌ﻫﺎ در ﻣﺪت زﻣﺎن ١٥ و ٣٠ روز ﺑﺮاى ارزیابی ﻋﻨﺼﺮ ﻛﺒﺎﻟﺖ ﺑﻪ دﺳﺘﮕﺎه اﺳﭙﻜﺘﺮوﻓﻮﺗﻮﻣﺘﺮى ﺟﺬب اﺗﻤﻲ ﻓﺮﺳﺘﺎده ﺷﺪ. دادهﻫﺎ ﺑﺎ آزﻣﻮن‌ﻫﺎى آﻣﺎرى t-test و Paired t-test ﺗﺠﺰﻳﻪ و ﺗﺤﻠﻴﻞ ﺷﺪﻧﺪ (0/05 = α).
ﻳﺎﻓﺘﻪ‌ﻫﺎ: ﻣﻴﺎﻧﮕﻴﻦ آزاد ﺷﺪن ﻛﺒﺎﻟﺖ از آﻟﻴﺎژ ﻛﺮوم ﻛﺒﺎﻟﺖ ﻫﻢ در دﻣﺎى ٤٥ و ﻫﻢ در دﻣﺎى ٥٥ درﺟﻪ‌ی ﺳﺎﻧﺘﻲ‌ﮔﺮاد در روز ٣٠ ﺑﻴﺸﺘﺮ از ١٥ ﺑﻮد و اﻳﻦ اﺧﺘﻼف در دﻣﺎى ٤٥ درﺟﻪ ﻣﻌﻨﻲ‌دار ﺑﻮد (0/036 = p value). در ﺣﺎﻟﻲ ﻛﻪ در دﻣﺎى ٥٥ ﻣﻌﻨﻲدار ﻧﺒﻮد (0/0754 = p value). در ﻣﻘﺎﻳﺴﻪ‌ی ﻣﻴﺰان آزاد ﺷﺪن ﻳﻮن در دو دﻣﺎى ٤٥ و ٥٥ درﺟﻪ‌ی ﺳﺎﻧﺘﻲ‌ﮔﺮاد، اﺧﺘﻼف اﻳﻦ دو در روز ١٥ و روز ٣٠ ﻣﻌﻨﻲدار ﻧﺒﻮد (0/0754 = p value).
ﻧﺘﻴﺠﻪﮔﻴﺮى: ﻣﻴﺰان آزاد ﺷﺪن ﻋﻨﺼﺮ ﻛﺒﺎﻟﺖ از آﻟﻴﺎژ ﻛﺮوم- ﻛﺒﺎﻟﺖ در دﻣﺎى ٤٥ درﺟﻪ، ﺑﺎﻋﺚ آزاد ﺷﺪن ﻳﻮن ﻛﻤﺘﺮى ﻧﺴﺒﺖ ﺑﻪ دﻣﺎى ٥٥ درﺟﻪ، ﺑﻪ ﻣﺮور زﻣﺎن ﻣﻲ‌ﺷﻮد.
کلید واژه‌ها: ﻛﺮوژن، آﻟﻴﺎژ، اﺳﭙﻜﺘﺮوﻓﻮﺗﻮﻣﺘﺮى ﺟﺬب اﺗﻤﻲ، اﻟﻜﺘﺮوﭘﺎﻟﻴﺶ

عنوان مقاله [English]

Comparison of Two Different Electro Polish Temperature on Cobalt Ion Release of Chromium Cobalt Alloy in Artificial Saliva with Atomic Absorption Spectrophotometry

چکیده [English]

Introduction: Metals are widely used in direct and indirect restorative materials, both in prosthetics and orthodontics. The biocompatibility of these metals depends on their chemical nature, the number of ions released, and the period of contact of these metals. This study aims to compare two different electropolish temperatures on the release of cobalt ion from chromium-cobalt alloy.
Materials and methods: In this experimental study, 24 wax patterns were cut in the form of a circle with a diameter of 15 mm and a thickness of 1 mm. Then, the samples were sprued and invested. Burn out and casting were used to cast the alloy. The samples were sandblasted and polished with aluminum oxide. They were randomly divided into two 12-number groups and electropolished at 45° and 55° C. Samples were placed in artificial saliva and sent to atomic absorption spectrophotometer for 15 and 30 days to read the cobalt. Data were then analyzed by Independent t-test and Paired t-test (p value = 0.05).
Results: The average release of cobalt from chromium cobalt alloy on the 30th day was higher than the 15th day at both 45° C and 55° C. This difference was significant at 45° C (p value = 0.036) while not significant at 55 ° C (p value = 0.0754). Regarding the comparison of the ion release at 45 ° and 55° C, the difference was not significant on the 15th day (p value = 0.067) and 30th day (p value = 0.0754).
Conclusion: The amount of cobalt ions released from the cobalt-chromium alloy at 45° C is fewer than at 55° C over time.
Keywords: Corrosion, Alloys, Atomic absorption spectrophotometry

1. Issa Y, Brunton P, Waters CM, Watts DC. Cytotoxicity of metal ions to human oligodendroglial cells and human gingival fibroblasts assessed by mitochondrial dehydrogenase activity. Dent Mater 2008; 24(2): 281-7.
2. Tendon R, Gupta S, Agarwal Sk. Denture base materials: from past to future. Indian J Dent Sci 2010; 2: 33-9.
3. Pangi AM, Shetty M, Prasad DK, Kanathila H. The release of elements from the base metal alloys in a protein containing biologic environments and artificial saliva - An invitro study. J Clin Diagn Res 2016; 10(1): ZC23-7.
4. Bumgardner JD, Johansson BI. Effects of titanium‐dental restorative alloy galvanic couples on cultured cells. J Biomed Mater Res 1998; 43(2): 184-91.
5. Bayne SC. Correlation of clinical performance with in vitro tests’ of restorative dental materials that use polymer-based matrices. Dent Mater 2012; 28(1): 52-71.
6. Bayramoğlu G, Alemdaroğlu T, Kedici S, Aksüt AA. The effect of pH on the corrosion of dental metal alloys. J Oral Rehabil 2000; 27(7): 563-75.
7. Rincić N, Baucić I, Miko S, Papić M, Prohić E. Corrosion behaviour of the Co-Cr-Mo dental alloy in solutions of different composition and different pH values. Coll Antropol 2003; 27(Suppl 2): 99-106.
8. Lucchetti MC, Fratto G, Valeriani F, De Vittori E, Giampaoli S, Papetti P, et al. Cobalt chromium alloys in dentistry: An evaluation of metal ion release. J Prosthet Dent 2016; 114(4): 602-8.
9. Podariu AC, Papovici AR, Sava-Rosianu R, Oancea R. Comparative study on nickel and chromium salivary concentration in patients with prosthetic restorations on metallic frame. Revista de Chimie 2013; 64(9): 971-3.
10. Karbassi AR, Bayati I. Environmental geochemistry. Tehran, Iran: Kavosh, 2001. [In Persian].
11. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 5th ed. St. Louis, Mo: Elsevier; 2016. p. 180-382.
12. Shillingburg HT, Sather DA, Wilson Jr EL, Cain JR, Mitchell DL, Blanco LJ, et al. Fundamentals of fixed prosthodontics. 4th ed. Batavia, IL: Quintessence Publishing; 2020. p. 375-95.
13. Carr A, Brown DT. McCracken's removable partial prosthodontics. 13th ed. St. Louis, MO: Elsevier; 2015. p. 33-50.
14. Surmann H, Huser J. Automatic electropolishing of cobalt chromium dental cast alloys with a fuzzy logic controller. Comput Chem Eng1998; 22(7-8): 1099-111.
15. McGinley EL, Dowling AH, Moran GP, Fleming GJ. Influence of S. mutans on base-metal dental casting alloy toxicity. J Dent Res 2013; 92(1): 92-7.
16. Al Jabbari YS, Koutsoukis T, Barmpagadaki X, Zinelis S. Metallurgical and interfacial characterization of PFM Co–Cr dental alloys fabricated via casting, milling or selective laser melting. Dent Mater 2014; 30(4): e79-88.
17. Tai Y, De Long R, Goodkind RJ, Douglas WH. Leaching of nickel, chromium, and beryllium ions from base metal alloy in an artificial oral environment. J Prosthet Dent 1992; 68(4): 692-7.
18. Skoog DA, Holler FJ, Crouch SR. Principles of instrumental analysis. 6th ed. London, UK: Cengage Learning; 2014. p. 91-128.
19. Bhaskar V, Reddy VS. Biodegradation of nickel and chromium from space maintainers: An in vitro study. J Indian Soc Pedod Prev Dent 2010; 28(1): 6-12.
20. Yfantis C, Yfantis D, Anastassopoulou J, Theophanides T. Analytical and electrochemical evaluation of the in vitro corrosion behavior of nickel-chrome and cobalt-chrome casting alloys for metal-ceramic restorations. Eur J Prosthodont Restor Dent 2007; 15(1): 33-40.
21. Geis-Gerstorfer J, Sauer KH, Pässler K. Ion release from Ni-Cr-Mo and Co-Cr-Mo casting alloys. Int J Prosthodonti 1991; 4(2): 152-8.
22. Mutlu-Sagesen L, Ergun G, Karabulut E. Ion release from metal-ceramic alloys in three different media. Dent Mater J 2011; 30(5): 598-610.
23. Gomez-Gallegos AA, Mill F, Mount AR. Surface finish control by electrochemical polishing in stainless steel 316 pipes. J Manuf Process 2016; 23: 83-9.
24. Han W, Fang F. Fundamental aspects and recent developments in electropolishing. Int J Mach Tools Manuf 2019; 139: 1-23.
25. Duradjiz VN, Kaputkin DE. Metal surface treatment in electrolyte plasma during anodic process. J Electrochem Soc 2016; 163(3): E43-8.