بررسی اثر زوایای مختلف کانکشن ایمپلنت- اباتمنت بر توزیع استرس سیستم ایمپلنت به روش المان محدود

نوع مقاله : مقاله‌های پژوهشی

چکیده

مقدمه: ایمپلنت‌های تیتانیومی به طور گسترده به کار می‌روند. میزان استرس وارد بر استخوان عامل مهمی در موفقیت درمان ایمپلنت می‌باشد. طرح کانکشن ایمپلنت- اباتمنت نقش مهمی در اتصال و توزیع استرس اکلوزال دارد. هدف از مطالعه‌ی حاضر، بررسی چگونگی انتقال استرس بر اجزاء ایمپلنت و استخوان اطراف در سه زاویه‌ی مختلف کانکشن اباتمنت- ایمپلنت می‌باشد.  
مواد و روش‌ها: در یک مطالعه‌ی توصیفی- تحلیلی، المان محدود که در سال ۱۳۹۵ در دانشگاه علوم پزشکی اصفهان انجام گردید، سه نوع ایمپلنت- اباتمنت کانکشن اینترنال هگزاگونال با زوایای 8، 11 و 16 درجه طراحی شد. مدل‌های بلاک استخوانی بر اساس CBCT از مندیبل توسط CAD-CAM طراحی و ساخته شد. مجموعه‌ی اباتمنت- ایمپلنت در داخل بلاک استخوانی قرار داده شد. مدل‌ها تحت نیروی اکلوزالی عمودی200N  و نیروی 200N زاویه‌دار 15 درجه باکولینگوالی در مرکز سطح اکلوزال کراون، قرار گرفت. مدل‌ها آنالیز شدند و  Von Miss Stressبه دست آمده ثبت شد.
یافته‌ها: جز در زاویه کانکشن 8 درجه، در سایر حالات با افزایش زاویه اعمال نیرو مقادیر ماکزیموم استرس افزایش یافت. با افزایش زاویه‌ی کانکشن در نیروی اگزیالی و نیروی زاویه‌دار استرس در اباتمنت، اسکرو و ایمپلنت افزایش و در استخوان اطراف کاهش یافت.
نتیجه‌گیری: نیروهای زاویه‌دار باعث افزایش استرس‌ها در اباتمنت، پیچ نگهدارنده و استخوان می‌شود. افزایش زاویه‌ی محل اتصال ایمپلنت- اباتمنت باعث افزایش استرس‌ها در اباتمنت، ایمپلنت و پیچ نگهدارنده و کاهش استرس در استخوان اطراف می‌شود.
کلید واژه‌ها: کانکشن اباتمنت ایمپلنت؛ استرس؛ آنالیز المان محدود؛ استخوان کرستال.

عنوان مقاله [English]

Investigating the Effect of Different Implant-Abutment Connection Angles on the Stress Distribution of the Implant System Using the Finite Element Method

چکیده [English]

Introduction: Titanium implants are widely used due to their mechanical properties in jawbones. Many studies have shown the success of dental implants in the treatment of edentulous and partially edentulous mandible and maxilla.
Methods and Materials: Three types of implant-abutment internal hexagonal connections with angles of 8, 11, and 16 degrees were designed for this study. All the samples had identical dimensions except the angle of connection. Ceno-Bonemodels were designed and built based on CBCT from mandible by CAD-CAM with dimensions of 20 mm height, 10 mm crowding, and 10 mm buccolingual. The implant-abutment set was placed within the designed block. All samples were put under occlusal vertical force 200N (load type1) and non-vertical force 200N with an angle of about15 buccolingual degrees (Load type2) and applied precisely to the center of the occlusal crown. Each model was analyzed according to the material characteristics used, and the obtained Von Miss Stress was recorded.
Results: Except for the implant and the connection angle of 8 degrees, in other cases, increasing the angle of applied force increased maximum stress values. By increasing the connection angle in axial force and angular force, the stress in the abutment, screw, and implant increased and decreased in the surrounding bone.
Conclusion: Angled forces increase stress on the abutment, retaining screw and bone. The connection point angle of the implant-abutment increases stresses in the abutment, implant, and retaining screw and decreases stress in the surrounding bone.
Key words: Implant abutment connection, Stress, (FEA) Finite Element Analysis, Crestal bone

1. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981; 52(2): 155-70.
2. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res 2000; 11(Suppl 1): 156-8.
3. Carlson B, Jönsson G, Sandahl L, Nordin T, Hising P, Nelvig P, et al. A 1-year clinical report of a one-piece implant abutment. Int J Prosthodont 2001; 14(2): 159-63.
4. Nergiz I, Schmage P, Shahin R. Removal of a fractured implant abutment screw: a clinical report. J Prosthet Dent 2004; 91(6): 513-7.
5. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003; 90(2): 121-32.
6. Balik A, Karatas MO, Keskin H. Effects of different abutment connection designs on the stress distribution around five different implants: a 3-dimensional finite element analysis. J Oral Implantol 2012; 38(S1): 491-6.
7. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001; 85(6): 585-98.
8. Amid R. Comparison of the effect of three abutment-implant connections on stress distribution at the internal surface of dental implants: a finite element analysis. J Dent Res Dent Clin Dent Prospects 2014; 7(3): 132-9.
9. Aboyoussef H, Weiner S, Ehrenberg D. Effect of an antirotation resistance form on screw loosening for single implant-supported crowns. J Prosthet Dent 2000; 83(4): 450-5.
10. Watanabe F, Hiroyasu K, Ueda K. The fracture strength by a torsion test at the implant-abutment interface. Int J Implant Dent 2015; 1(1): 25.
11. Khraisat A, Stegaroiu R, Nomura S, Miyakawa O. Fatigue resistance of two implant/abutment joint designs. J Prosthet Dent 2002; 88(6): 604-10.
12. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000; 15(4): 519-26.
13. Chu CM, Huang HL, Hsu JT, Fuh LJ. Influences of internal tapered abutment designs on bone stresses around a dental implant: Three‐dimensional finite element method with statistical evaluation. J Periodontol 2012; 83(1): 111-8.
14. Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofac Res 2014; 4(3): 200-3.
15. Shetty P, Hegde A, Rai K. Finite element method-an effective research tool for dentistry. J Clin Pediatr Dent 2010; 34(3): 281-5.
16. Fu JH, Hsu YT, Wang HL. Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur J Oral Implantol 2012; 5(Suppl): S91-103.
17. Bouazza-Juanes K, Martinez-Gonzalez A, Peiro G, Rodenas JJ, Lopez-Molla MV. Effect of platform switching on the peri-implant bone: A finite element study. J Clin Exp Dent 2015; 7(4): e483.
18. Martini AP, Freitas Jr AC, Rocha EP, de Almeida EO, Anchieta RB, Kina S, et al. Straight and angulated abutments in platform switching: influence of loading on bone stress by three-dimensional finite element analysis. J Craniofac Surg 2012; 23(2): 415-8.
19. Sahabi M, Adibrad M, Mirhashemi FS, Habibzadeh S. Biomechanical effects of platform switching in two different implant systems: a three-dimensional finite element analysis. J Dent (Tehran) 2013; 10(4): 338-50.
20. Junior JFS, Pellizzer EP, Verri FR, de Carvalho PSP. Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study. Mater Sci Eng C Mater Biol Appl 2013; 33(8): 4700-14.
21. Arun Kumar G, Mahesh B, George D. Three dimensional finite element analysis of stress distribution around implant with straight and angled abutments in different bone qualities. J Indian Prosthodont Soc 2013; 13: 466-72.
22. Romeed SA, Malik R, Dunne SM. Marginal bone loss influence on the biomechanics of single implant crowns. J Craniofac Surg 2013; 24(4): 1459-65.
23. Zanardi PR, Stegun RC, Sesma N, Costa B, Shibli JA, Lagana DC. Stress distribution around dental implants placed at different depths. J Craniofac Surg 2015; 26(7): 2163-6.
24. Rieger MR, Adams WK, Kinzel GL, Brose MO. Finite element analysis of bone-adapted and bone-bonded endosseous implants. J Prosthet Dent 1989; 62(4): 436-40.
25. O'Mahony A, Bowles Q, Woolsey G, Robinson SJ, Spencer P. Stress distribution in the single-unit osseointegrated dental implant: finite element analyses of axial and off-axial loading. Implant Dent 2000; 9(3): 207-18.
26. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998; 24(2): 80-8.
27. Tang CB, Liu SY, Zhou GX, Yu JH, Zhang GD, Bao YD, et al. Nonlinear finite element analysis of three implant-abutment interface designs. Int J Oral Sci 2012; 4(2): 101-8.
28. Segundo RMH, Oshima HMS, da Silva INL, Burnett Jr LH, Mota EG, Silva LL. Stress distribution of an internal connection implant prostheses set: a 3D finite element analysis. Stomatologija 2009; 11(2): 55-9.
29. Pjetursson BE, Thoma D, Jung R, Zwahlen M, Zembic A. A systematic review of the survival and complication rates of implant‐supported fixed dental prostheses (FDP s) after a mean observation period of at least 5 years. Clin Oral Implants Res 2012; 23(Suppl 6): 22-38.
30. Assunção WG, Delben JA, Tabata LF, Barao VAR, Gomes EA, Garcia Jr IR. Preload evaluation of different screws in external hexagon joint. Implant Dent 2012; 21(1): 46-50.
31. Pjetursson BE, Brägger U, Lang NP, Zwahlen M. Comparison of survival and complication rates of tooth‐supported fixed dental prostheses (FDPs) and implant‐supported FDPs and single crowns (SCs). Clin Oral Implants Res 2007; 18(Suppl 3): 97-113.
32. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5‐year survival and complication rates of implant‐supported single crowns. Clin Oral Implants Res 2008; 19(2): 119-30.
33. Feitosa PCP, de Lima APB, Silva-Concilio LR, Brandt WC, Neves ACC. Stability of external and internal implant connections after a fatigue test. Eur J Dent 2013; 7(3): 267-71.
34. Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J Prosthet Dent 1999; 82(4): 436-40.
35. Winkler S, Ring K, Ring JD, Boberick KG. Implant screw mechanics and the settling effect: an overview. J Oral Implantol 2003; 29(5): 242-5.
36. Alvarez-Arenal A, Segura-Mori L, Gonzalez-Gonzalez I, Gago A. Stress distribution in the abutment and retention screw of a single implant supporting a prosthesis with platform switching. Int J Oral Maxillofac Implants 2013; 28(3): e112-21.