1. Zhang Y, Dudley J. The influence of different cement spaces on the marginal gap of CAD/CAM all‐ceramic crowns. Aust Dent J 2019; 64(2): 167-74.
2. Blatz M, Vonderheide M, Conejo J. The effect of resin bonding on long-term success of high-strength ceramics. J Dent Res 2018; 97(2): 132-9.
3. Hayashi M. Adhesive dentistry: understanding the science and achieving clinical success. Dent Clin North Am 2020; 64(4): 633-43.
4. Mohammadi F, Barekatain M. Antibacterial effect of glass ionomer cement and resin cement on cariogenic bacteria of Streptococcus mutans, Lactobacillus acidophilus and Streptococcus sobrinus [in Persian]. Res Dent Sci 2022; 19(2): 106-11.
5. Ashy LM, Marghalani H. Internal and marginal adaptation of adhesive resin cements used for luting inlay restorations: An in vitro micro-CT study. Materials (Basel) 2022; 15(17): 6161.
6. Pinna R, Usai P, Filigheddu E, Garcia-Godoy F, Milia E. The role of adhesive materials and oral biofilm in the failure of adhesive resin restorations. Am J Dent 2017; 30(5): 285-92.
7. Lin Y, Chen J, Zhou X, Li Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol 2021; 47(5): 667-77.
8. Jang HJ, Kim JH, Lee N-K, Paik H-D. Inhibitory effects of Lactobacillus brevis KU15153 against Streptococcus mutans KCTC 5316 causing dental caries. Microb Pathog 2021; 157: 104938.
9. Park J-Y, Lee J-J, Bae S-Y, Kim J-H, Kim W-C. In vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods. J Prosthet Dent 2016; 116(4): 536-42.
10. Savencu CE, Porojan S, Porojan L. Analysis of internal and marginal fit of metal-ceramic crowns during processing, using conventional and digitized technologies. Rev Chim(Bucharest) 2018; 69(7): 1699-701.
11. Davari A, Mosaddegh A, Daneshkazemi A, Mortazavi Sanigei SM. Comparison of antibacterial effect of composite resins incorporating copper with zinc oxide nanoparticles on Streptococcus mutans [in Persian]. J Mashhad Dent Sch 2019; 43(4): 344-51.
12. Mirhashemi AH, Bahador A, Kassaee MZ, Daryakenari G, Ahmad-Akhoundi MS, Sodagar A. Antimicrobial effect of nano-zinc oxide and nano-chitosan particles in dental composite used in orthodontics. J Med Bacteriol 2013; 2(3-4): 1-10.
13. Fauzi NA, Ireland A, Sherriff M, Bandara H, Su B. Nitrogen doped titanium dioxide as an aesthetic antimicrobial filler in dental polymers. Dent Mater 2022; 38(1): 147-57.
14. Florez FLE, Hiers RD, Larson P, Johnson M, O'Rear E, Rondinone AJ, et al. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Mater Sci Eng C Mater Biol Appl 2018; 93: 931-43.
15. Pinto RJ, Fernandes SC, Freire CS, Sadocco P, Causio J, Neto CP, et al. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr Res 2012; 348: 77-83.
16. Hernandez-Sierra JF, Ruiz F, Pena DCC, Martinez-Gutierrez F, Martinez AE, Guillen AdJP, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008; 4(3): 237-40.
17. Salas-Lopez EK, Pierdant-Perez M, Hernandez-Sierra JF, Ruiz F, Mandeville P, Pozos-Guillen AJ. Effect of silver nanoparticle-added pit and fissure sealant in the prevention of dental caries in children. J Clin Pediatr Dent 2017; 41(1): 48-52.
18. Sodagar A, Bahador A, Pourhajibagher M, Ahmadi B, Baghaeian P. Effect of addition of curcumin nanoparticles on antimicrobial property and shear bond strength of orthodontic composite to bovine enamel. Journal of Dentistry (Tehran, Iran). 2016;13(5):373.
19. Verma SK, Prabhat K, Goyal L, Rani M, Jain A. A critical review of the implication of nanotechnology in modern dental practice. Natl J Maxillofac Surg 2010; 1(1): 41-4.
20. Friedman M, Juneja VK. Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 2010; 73(9): 1737-61.
21. Fernandes JC, Tavaria FK, Soares JC, Ramos OS, Monteiro MJ, Pintado ME, et al. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol 2008; 25(7): 922-8.
22. Cai Y, Strømme M, Welch K. Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation. PLoS One 2013; 8(10): e75929.
23. No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 2002; 74(1-2): 65-72.
24. Tanbakuchi B, Bahador A. Nanoparticles in orthodontics: A review article. J Dent Med 2018; 31(2): 119-33.