مروری جامع بر استفاده از هوش مصنوعی در درمان‌های دندان‌پزشکی

نوع مقاله : مقاله مروری

نویسندگان

1 دستیار تخصصی درمان ریشه، گروه اندودانتیکس، مرکز تحقیقات دندانی، موسسه‌ی تحقیقات دندانی، دانشکده‌ی دندان‌پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دستیار تخصصی پروتزهای دندانی، مرکز تحقیقات ایمپلنت‌های دندانی، موسسه‌ی تحقیقات دندان‌پزشکی، دانشکده دندان‌پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دستیار تخصصی جراحی دهان، فک و صورت، کمیته تحقیقات دانشجویی، دپارتمان جراحی دهان، فک و صورت، دانشکده دندانپزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 دستیار تخصصی رشته ارتودانتیکس، کمیته تحقیقات دانشجویی، بخش تخصصی ارتودانتیکس، دانشکده دندانپزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

10.22122/jids.v21.i1.0077

چکیده

مقدمه: هوش مصنوعی، تکنولوژی است که از ماشین جهت تقلید رفتار انسان استفاده می‌کند. امروز نیز هوش مصنوعی تأثیر و کاربردهای فراوان‌تری در حیطه‌ی علوم پزشکی و نیز دندان‌پزشکی پیدا کرده است. این کاربردها مرتبط با حوزه‌های بسیار متفاوتی از درمان‌های دندان‌پزشکی از درمان ریشه تا درمان‌های ارتودنسی و نیز کاربردهایی در حطیه‌ی جراحی دهان، فک و صورت ونیز تشخیص و درمان بدخیمی‌های این نواحی می‌شود. در این مطالعه قصد داریم تا توانایی و نقش هوش مصنوعی را در جنبه‌های مختلف درمان‌های دندان‌پزشکی بررسی کنیم.
شرح مقاله: با با توجه به یافته‌های این مطالعه، امروزه پیشرفت بسیار زیادی در حوزه‌ی هوش مصنوعی از تشخیص تا طرح درمان‌های دندان‌پزشکی به وجود آمده است. استفاده از سیستم‌های یادگیری عمیق و یادگیری ماشینی می‌تواند در تشخیص ضایعات و پروگنوز بیماران مبتلا به بدخیمی‌های دهان مؤثر واقع شود. همچنین هوش مصنوعی امروزه می‌تواند در طرح درمان و نتیجه درمان در بیماران نیازمند ارتودنسی به ارتودنتیست کمک کند. از این سیستم‌ها در شناسایی و غربالگری پریودنشیم بیماران مبتلا به بیماری‌های پریودنتال همچنین استفاده می‌شود. و نیز مطالعات مختلفی اثربخشی استفاده از سیستم‌های هوش مصنوعی را در جنبه‌های مختلف درمان ریشه از تعیین طول کارکرد و شناسایی کانال‌ها تا تشخیص شکستگی‌های عمودی ریشه بیان کرده است.
نتیجه‌گیری: ااستفاده از هوش مصنوعی در درمان‌های دندان‌پزشکی کاربردهای وسیعی را نشان می‌دهد. اغلب کاربرد هوش مصنوعی امروزه در حوزه‌ی تشخیص و ارائه‌ی طرح درمان بر اساس سیستم‌های یادگیری ماشینی و یادگیری عمیق می‌باشد. هوش مصنوعی توانسته نتایج قابل قبولی را از خود نشان دهد، اگرچه شاید بتوان گفت ابتدای مسیر استفاده از آن هستیم و همچنان مطالعات مختلفی لازم است تا بتواند جنبه‌های مختلف کاربرد هوش مصنوعی را در درمان‌های دندان‌پزشکی به ما نشان دهد.

تازه های تحقیق

شایان گلکار: Google Scholar, PubMed

شایان قاسمی: Google Scholar, PubMed 

امیر قرآنی: Google Scholar, PubMed

مهدی ابراهیمی: Google Scholar, PubMed 

کلیدواژه‌ها


عنوان مقاله [English]

A Comprehensive Review on the Application of Artificial Intelligence in Dental Treatments

نویسندگان [English]

  • Shayan Golkar 1
  • Shayan Ghasemi 2
  • Amir Ghorani 3
  • Mehdi Ebrahimi 4
1 Post Graduate Student, Department of Endodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
2 Postgraduate Student, Department of Prosthodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
3 Post Graduate Student, Dental Student Research Committee, Department of oral and maxillofacial surgery, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
4 Post Graduate Student, Dental Student Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Introduction: Artificial Intelligence (AI) is a technology that uses machines to mimic human behavior. Nowadays, AI has gained more influence and applications in the fields of medical science and dentistry. These applications are related to many different areas of dental treatments, from root canal therapy to orthodontic treatments, applications in oral and maxillofacial surgery, as well as the diagnosis and treatment of malignancies in these areas. In this study we aim to investigate the role and capabilities of AI different dental treatments.
Discussion: According to the findings of this study, today significant progress has been made in the field of AI from diagnosis to dental treatment planning. The use of machine and deep learning systems can be effective in the diagnosis of lesions and prognosis for patients with oral malignancies. Also, AI can help orthodontists in treatment planning and predicting treatment outcomes in patients requiring orthodontic treatments. These systems are also used for identifying and screening the periodontium status of patients with periodontal disease. In addition, various studies have reported the effectiveness of using artificial intelligence systems in various aspects of root canal treatments, from determining working length and identifying root canals to detecting vertical root fractures.
Conclusion: The use of artificial intelligence shows wide applications in dental treatments. Most applications of artificial intelligence today are in the field of diagnosis and providing treatment plans based on machine and deep learning systems. Artificial intelligence has been able to show acceptable results, although it could be said that we are at the beginning of its application, and various studies are still required to reveal the different aspects of using artificial intelligence in the field of dental treatments.

کلیدواژه‌ها [English]

  • Artificial Intelligence
  • Dentistry
  • Machine Learning
  • Orthodontists
  • Periodontal Diseases
  1. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res 2020; 99(7): 769-74.
  2. Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int 2020; 51(3): 248-57.
  3. Hornik K. Approximation capabilities of multilayer feedforward net- works. Neural Netw 1991; 4(2): 251-7.
  4. Savadjiev P, Chong J, Dohan A, Vakalopoulou M, Reinhold C, Paragios N, et al. Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol 2019; 29(3): 1616-24.
  5. Thrall JH, Li X, Lxi Q, et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 2018; 15(3 Pt B): 504-8.
  6. Naylor CD. 2018. On the prospects for a (deep) learning health care system. JAMA 320(11): 1099-100.
  7. Israni ST, Verghese A. Humanizing artificial intelligence. JAMA 2019; 321(1): 29-30.
  8. Fiandaca MS, Mapstone M, Mahmoodi A, Gross T, Macciardi F, Cheema AK, et al. Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls. PLoS One 2018; 13(4): e0195318.
  9. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision car- diovascular medicine. J Am Coll Cardiol 2017; 69(21): 2657–64.
  10. Chiappelli F, Balenton N, Khakshooy A. Future innovations in viral immune surveillance: a novel place for bioinformation and artificial intelligence in the administration of health care. Bioinformation 2018; 14(5): 201–5.
  11. Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. J Affect Disord 2018; 241: 519-32.
  12. Hogarty DT, Mackey DA, Hewitt AW. Current state and future prospects of artificial intelligence in ophthalmology: a review. Clin Exp Ophthalmol 2019; 47(1): 128–39.
  13. Okada K, Rysavy S, Flores A, Linguraru MG. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans. Med Phys 2015; 42(4): 1653-65.
  14. Ren J, Qi M, Yuan Y, Duan S, Tao X. Machine learning-based MRI texture analysis to predict the histologic grade of oral squamous cell carcinoma. AJR Am J Roentgenol 2020; 215(5): 1184-90.
  15. Alkhadar H, Macluskey M, White S, Ellis I, Gardner A. Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma. J Oral Pathol Med 2021; 50(4): 378-84.
  16. Karadaghy OA, Shew M, New J, Bur AM. Development and assessment of a machine learning model to help predict survival among patients with oral squamous cell carcinoma. JAMA Otolaryngol Head Neck Surg 2019; 145(12): 1115-20.
  17. Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O. Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma. Eur Radiol 2020; 30(11): 6322-30.
  18. Kim DW, Lee S, Kwon S, Nam W, Cha IH, Kim HJ. Deep learning-based survival prediction of oral cancer patients. Sci Rep 2019; 9: 6994.
  19. Pan X, Zhang T, Yang Q, Yang D, Rwigema JC, Qi XS. Survival prediction for oral tongue cancer patients via probabilistic genetic algorithm optimized neural network models. Br J Radiol 2020; 93(1112): 20190825.
  20. Chu CS, Lee NP, Ho JWK, Choi SW, Thomson PJ. Deep learning for clinical image analyses in oral squamous cell carcinoma: A review. JAMA Otolaryngol Head Neck Surg 2021; 147(10): 893-900.
  21. Ariji Y, Sugita Y, Nagao T, Nakayama A, Fukuda M, Kise Y, et al. CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification. Oral Radiol 2020; 36(2): 148-55.
  22. Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol 2019; 145(4): 829-37.
  23. Bur AM, Holcomb A, Goodwin S, Woodroof J, Karadaghy O, Shnayder Y, et al. Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma. Oral Oncol 2019; 92: 20-5.
  24. Yan KX, Liu L, Li H. Application of machine learning in oral and maxillofacial surgery. Artificial Intelligence in Medical Imaging. 2021 Dec 28;2(6):104-14.
  25. Lee SJ, Yoo JY, Woo SY, Yang HJ, Kim JE, Huh KH, Lee SS, Heo MS, Hwang SJ, Yi WJ. A complete digital workflow for planning, simulation, and evaluation in orthognathic surgery. J Clin Med 2021; 10(17): 4000.
  26. Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg 2017; 46(1): 67-71.
  27. Fawzy HH, Choi JW. Evaluation of virtual surgical plan applicability in 3D simulation-guided two jaw surgery. J Craniomaxillofac Surg 2019; 47(6): 860-6.
  28. Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery - A literature review. J Formos Med Assoc 2018; 117(7): 547-58.
  29. Shin W, Yeom HG, Lee GH, Yun JP, Jeong SH, Lee JH, et al. Deep learning based prediction of necessity for orthognathic surgery of skeletal malocclusion using cephalogram in Korean individuals. BMC Oral Health 2021; 21: 130.
  30. Lin HH, Chiang WC, Yang CT, Cheng CT, Zhang T, Lo LJ. On construction of transfer learning for facial symmetry assessment before and after orthognathic surgery. Comput Methods Programs Biomed 2021; 200: 105928.
  31. Knoops PGM, Papaioannou A, Borghi A, Breakey RWF, Wilson AT, Jeelani O, et al. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci Rep 2019; 9: 13597.
  32. Faber J, Faber C, Faber P. Artificial intelligence in orthodontics. APOS Trends Orthod 2019; 9(4): 201-5.
  33. Suphatheerawatr T, Chamnannidiadha N. Esthetic perception of facial profile contour in patients with different facial profiles. J World Fed Orthod 2019; 8: 112-7.
  34. Jeelani W, Fida M, Shaikh A. The maxillary incisor display at rest: Analysis of the underlying components. Dental Press J Orthod 2018; 23(6): 48-55.
  35. Sriphadungporn C, Chamnannidiadha N. Perception of smile esthetics by laypeople of different ages. Prog Orthod 2017; 18(1): 8.
  36. Shan T, Tay FR, Gu L. Application of artificial intelligence in dentistry. J Dent Res 2021; 100(3): 232-44.
  37. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning–based convolutional neural network algorithm. J Periodontal Implant Sci 2018; 48(2): 114-23.
  38. Feres M, Louzoun Y, Haber S, Faveri M, Figueiredo LC, Levin L. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles. Int Dent J 2018; 68(1): 39-46.
  39. Yauney G, Rana A, Wong LC, Javia P, Muftu A, Shah P. Automated process incorporating machine learning segmentation and Correlation of Oral Diseases with Systemic Health. Annu Int Conf IEEE Eng Med Biol Soc 2019; 2019: 3387-93.
  40. Aminoshariae A, Kulild J, Nagendrababu V. Artificial intelligence in endodontics: current applications and future directions. J Endod 2021; 47(9): 1352-7.
  41. Seidberg BH, Alibrandi BV, Fine H, Logue B. Clinical investigation of measuring working lengths of root canals with an electronic device and with digital-tactile sense. J Am Dent Assoc 1975; 90(2): 379–87.
  42. Connert T, H € ulber JM, Godt A, et al. Accuracy of endodontic working length determination using cone beam computed tomography. Int Endod J 2014; 47(7): 698–703.
  43. Serna-Peña G, Gomes-Azevedo S, Flores-Treviño J, Madla-Cruz E, Rodríguez-Delgado I, Martínez-González G. In vivo evaluation of 3 electronic apex locators: Root ZX Mini, Apex ID, and Propex Pixi. J Endod 2020; 46(2): 158-61.
  44. Saghiri MA, Asgar K, Boukani KK, Lotfi M, Aghili H, Delvarani A, et al. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J 2012; 45(3): 257-65.
  45. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asgar K. The reliability of artificial neural network in locating minor apical foramen: a cadaver study. J Endod 2012; 38(8): 1130-4.
  46. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, Fujita H, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiology 2019; 48(3): 20180218.
  47. Fuss Z, Lustig J, Katz A, Tamse A. An evaluation of endodontically treated vertical root fractured teeth: impact of operative procedures. J Endod 2001; 27(1): 46-8.
  48. Talwar S, Utneja S, Nawal RR, Kaushik A, Srivastava D, Oberoy SS. Role of cone-beam computed tomography in diagnosis of vertical root fractures: a systematic review and meta-analysis. J Endod 2016; 42(1): 12-24.
  49. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol 2020; 36(4): 337-43.
  50. Vicory J, Chandradevan R, Hernandez-Cerdan P, Huang WA, Fox D, Qdais LA, et al. Dental microfracture detection using wavelet features and machine learning. Proc SPIE Int Soc Opt Eng 2021; 11596: 115961R.
  51. Sachdeva S, Mani A, Vora H, Saluja H, Mani S, Manka N. Artificial intelligence in periodontics: A dip in the future. J Cell Biotechnol 2021; 7(2): 119-24.
  52. Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - A systematic review. J Dent Sci 2021; 16(1): 508-22.
  53. Mahmood H, Shaban M, Indave BI, Santos-Silva AR, Rajpoot N, Khurram SA. Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic review. Oral Oncol 2020; 110: 104885.
  54. Nagi R, Aravinda K, Rakesh N, Gupta R, Pal A, Mann AK. Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review. Imaging Sci Dent 2020; 50(2): 81-92.
  55. Choi EM, Park BY, Noh HJ. Efficacy of mobile health care in patients undergoing fixed orthodontic treatment: A systematic review. Int J Dent Hyg 2021; 19(1): 29-38.
  56. Maffulli N, Rodriguez HC, Stone IW, Nam A, Song A, Gupta M, et al. Artificial intelligence and machine learning in orthopedic surgery: a systematic review protocol. J Orthop Surg Res 2020; 15(1): 478.
  57. Indovina P, Barone D, Gallo L, Chirico A, De Pietro G, Giordano A. Virtual Reality as a Distraction Intervention to Relieve Pain and Distress During Medical Procedures: A Comprehensive Literature Review. Clin J Pain 2018; 34(9): 858-77.
  58. Renton T. Dental (Odontogenic) Pain. Rev Pain 2011; 5(1): 2-7.
  59. Schwendicke FA, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res 2020; 99(7): 769-74.
  60. Ribera NT, De Dumast P, Yatabe M, Ruellas A, Ioshida M, Paniagua B, Styner M, Gonçalves JR, Bianchi J, Cevidanes L, Prieto JC. Shape variation analyzer: a classifier for temporomandibular joint damaged by osteoarthritis. Proc SPIE Int Soc Opt Eng 2019; 10950: 517-23.
  61. Agrawal P, Nikhade P, Nikhade PP. Artificial intelligence in dentistry: past, present, and future. Cureus 2022; 14(7): e27405.